
Theor Chim Acta (1987) 72:123-138

�9 Springer-Verlag 1987

A data-oriented CI program system

F. Sasaki, K. Tanaka, T. Noro, M. Togasi, T. Nomura, M. Sekiya,
T. Gonoi and K. Ohno

Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060, Japan

(Received July 1, 1986; revised and accepted May 11, 1987)

A program system has been developed for calculation of molecular electronic
structure using the configuration interaction (CI) method. Emphasis is placed
on the inherent genealogical data structure of the files which a program system
produces. Based on this genealogy, a language is provided for users which
allows easy and consistent manipulation of files in the new system. Users
need only specify a file which contains the desired data, using this file
manipulat ion language. I f the desired file does not exist, the new system
creates it automatically by calling appropriate modules. The new system may
be regarded as a data base equipped with computational ability.

Key words: Program system - - CI calculation - - Molecular electronic struc-
t u r e - Genealogical data s t ruc ture - - File manipulation l a n g u a g e - - Data base

I. Introduction

The configuration interaction (CI) method is a most powerful method and its
possibilities extend beyond those of the Har t ree-Fock approximation. It provides
a useful framework for further approximations, such as the perturbational
approach.

A CI procedure consists of many steps and produces a number of intermediate
data which can or should be used in later steps. For example, atomic integrals
which are computed for a certain molecular state need not be recomputed for
the calculation of other states, and a common set of configuration state functions
(CSFs) should usually be used throughout for different geometries in order to
obtain a valid potential surface. Users may want to use various molecular orbitals
for a C! calculation, such as SCF orbitals of the ground state, those of excited

124 F. Sasaki et al.

states, natural orbitals obtained from a previous CI calculation or a merged set
of these orbitals. Therefore, users must save a number of "files" for later calcula-
tions. The term "file" is used here merely to denote a cluster of data carrying
pertinent information, such as the coefficients of molecular orbitals.

One of the most important problems in designing a program system is how to
store and retrieve files. I f a program system handles a fixed number of files and
their mutual relationships is not altered, the access path can be embedded in the
program codes. In this case, storage is divided into appropriate regions either
statically or d~ynamically and each region holds the contents of a particular file.
By referring to the same region in the program codes, data can be transferred
from one place to another in the program system. The main storage is commonly
used for this purpose but the disk storage is also often used when the data space
requirement is large.

For a CI program system, the mutual relationship of files is usually much more
complex and the method described above may become unsatisfactory. Users may
want to attach various combinations of files for each program run. Therefore, a
mutual relationship of files cannot be built into the program codes. A simple
solution that allows free selection of files is to use an external data set for each
file. Access by a DD (data definition) name in the program codes assures local
consistency of data transfer among modules, whereas the use of DD statements
enables users to attach selected data sets.

The above features might be considered sufficient for a file system, but there are
still serious shortcomings. It must be remembered that files produced by a program
system are closely related to each other. For example, a CI eigenvector file itself
has no meaning unless the CSFs and the molecular orbitals which correspond
to the eigenvector are known. A module which processes a CI vector file, e.g.
one which creates natural orbitals, will certainly need other files, as mentioned
above. Consequently, users must be careful to remember the contents of files and
the way in which they are related if they are to be used later, since improper
combination of files leads to a meaningless computation. I f a program system
recognizes the underlying structure of files and provides a systematic means of
gaining access to files, file book-keeping will be greatly facilitated. Some of the
current program systems in the field of computational chemistry offer data retrieval
packages (1, 2) in addition to the standard data-set access method in order to
allow more flexible file handling. No attempt, however, has been made to design
a quantum chemistry program system which records the complete relationship
of the files it produces.

We have designed a CI program system named KAMUY, which automatically
records relevant genealogical information when a file is created. By keeping these
records in a computer, users have at their grasp the complete relationship of files.
In fact, the program system itself utilizes these records for file management. The
new CI system provides users with a language for file access. Access can be
gained to a particular file in a variety of ways by using this file manipulation
language. Users need only specify a file which contains the desired data. I f the

A data-oriented CI program system 125

desired file does not exist, K A M U Y creates it automatically by calling an appropri-
ate module. In other words, users can perform calculations as if they were
retrieving data items from a data base.

The system utilizes a virtual storage access method (VSAM) data set (3), which
stores both system records and files. The VSAM data set is composed of
homogeneous and key accessible VSAM records. A cluster of VSAM records
constitutes a K A M U Y file.

In Sect. 2, the method of organizing and retrieving files by means of K A M U Y
is described. Section 3 explains the physical file structure. Concluding remarks
are given in the final section. An example of a logging list of a CI calculation
for the ground state of the methylene molecule and the syntax of K A M U Y input
are given in Appendices 1 and 2 respectively.

2. File organization and data retrieval in KAMUY

In this section, we describe how data are organized, generated, and retrieved in
the K A M U Y system.

2.1. Functional expressions for files

In general, a program system reads in data prepared by users, manipulates them,
and finally writes computed results on media. The final results are not produced
by a single procedure; a series of procedures has to be invoked, as shown
schematically in Fig. 1. R, S , . . . and V are "files" as described in the previous
section, such as the nuclear coordinates, coefficients of molecular orbitals, etc.
The objective of a computation is to generate a file which contains requested
data items.

Looking at the relationship shown in Fig. 1, it becomes evident that we can use
functional expressions for the specification of a particular file. In Fig. 1, module
A produces file T from files R and S. Since the contents of file T are uniquely
determined by files R and S, and module A, file T can be expressed as A(R, S).
Module A plays the role of a function having two parameters and files R and S

I f i l e R I
r

I module A I

J
I f i l o I

[

f i l e S

I

1
module B

f i l e V

file U]

Fig. 1. File production in a computer. Module A produces file T from files R and S, etc

126 F. Sasaki et al.

are the actual arguments of the function. Whenever a computational module in
the K A M U Y system produces a file, it simultaneously creates system records
which store the above functional relationship. It should be noted that a module
in K A M U Y produces only one file at a time. This allows the use of the functional
form for the produced file. The organization of all the files based on this file
genealogy is of fundamental importance in the system design of KAMUY.

2.2. File manipulation language

The K A M U Y system provides a file manipulat ion language which is based on
the relationship of files as described in the previous section. The language is
similar in appearance to widely used programming languages, such as FORTRAN
or PL/ I , but it is essentially different in the following two points.

1. An element of data in the file manipulation language is a file, whereas it is a
number or a character string in most programming languages.

2. The return value of a function is a file which is created by a module.

Using this language, users can write a statement

MOC = 'MOCL_3BI '

which means that a file named " M O C L _ 3 B I " is given the temporary name MOC.
In subsequent statements, the symbol MOC can be used as a synonym for the
file name. A statement

T = TEL (MOC, SOMO, TELSO)

means that an output file of the module TEL (transformation module of two-
electron integrals) will be given the temporary file name T. The temporary names
of the input files of this module are MOC [classification table of molecular
orbitals (MO)], SOMO [transformation coefficients from symmetry orbitals (SO)
to MO] and TELSO (SO integral file). Users can write such a statement irrespective
of whether the corresponding file exists or not, because if the specified file does
not exist the system creates it automatically. In fact, writing such statements is
actually the only means of activating computational modules of KAMUY.

There follows an example of a list of statements for a sample CI calculation of
the methylene molecule.

G

B

A

TELSO

OELSO

S

SOMO

CSF

OELMO

TELMO

= ' G E O M _ C H 2 '

= 'BASIS_CH2'

= 'AOSPEC_CH2'

= JAMTEL(G, B, A)

= JAMOEL(G, B, A)

= 'SCFSPEC_CH2'

= JAMSCF(OELSO, TELSO, S)

= CSF('CSF_SPEC_3BI ')

= OEL('MOCL_3BI ' , SOMO, OELSO, TELSO)

= TEL('MOCL_3BI ' , SOMO, TELSO)

A data-oriented CI program system 127

EIG = EIG(CSF, TELMO, OELMO)

PRINTF (EIG)

Some of the files in the K A M U Y system are created by users and are called
primary files. The primary files in the above example are " G E O M _ C H 2 " for
molecular geometry, "CSF_SPEC_3BI" for a specification of CSFs and so on.
These primary files can be prepared either in an interactive mode or in a batch
mode. In this example, these primary files are assumed to exist. JAMOEL,
JAMTEL and JAMSCF are modules for the generation of one-electron integrals,
two-electron integrals and for SCF calculation, respectively. The actual computa-
tion represented by these modules is performed by the program system JAMOL3
(4), and these modules merely copy the results of JAMOL3 into the K A M U Y
system. OEL, TEL, CSF and EIG are modules for the transformation of one-
and two-electron integrals, CSF generation and obtaining CI eigenveetors, respec-
tively. Some functions do not return a file as their return value. Instead, they are
called solely for their side-effects. P R INTF is one such function; it prints the
contents of a file. In Appendix 1, a logging list of a sample run is shown.

In some cases, users may want to find one of the input files from an output file.
We define a "role name" and an operator " / " for this purpose. A role name is
assigned to each input file of a module to specify the role it plays. For example,
module E I G uses three input files: a CSF file, a two-electron MO integral file
and a one-electron MO integral file. The role names assigned to them are CSF,
TEL_MO and OEL_MO, respectively. By adding the operator " / " and a role
name after an expression which represents a file, users can specify one of the
input files. In the sample CI calculation, file TELMO can be written as
E I G / T E L _ M O .

In the file manipulation language of the K A M U Y system, any one of the following
six expressions can be used to specify a file:

1. File name enclosed by the quote symbol
2. F # followed by a file number assigned by the system
3. Temporary file name
4. Module name (express ion , . . . , expression)
5. Module name (expression: role n a m e , . . . , expression: role name)
6. Expression/role name

Note that the definition is recursive. An expression in the above list can be
substituted by any one of the forms.

Use of the file expressions also allows easy and consistent allocation of input
files for a module, which is very important. Generation of natural orbitals is
taken as an example. Module NAT produces natural orbitals in KAMUY. It
requires four input files: (1) a CSF file in the form of distinct row tables (5); (2)
a CI eigenvector file; (3) transformation coefficients of molecular orbitals; and
(4) a classification table of molecular orbitals. Part of the file relationship is
depicted in Fig. 2, where the input files of NAT are marked C, V, S and M. Role
names are shown in round brackets. It is apparent that the input flies C, S and

128

I
module

CSF

file C

L[I
module

TEL

file T

<osF Ill
module

EIG

f i l e V

I f i l e S

I f i l e o I
(OEL-MO)

I J f i l o M

(MOCLASS)

1 r
module

NAT

file N

F. Sasaki et al.

Fig. 2. Tracing input files for module NAT. Three input files C, S and M can be traced back to file
V, as shown by thick lines

M can be traced from file V, i.e. file C as V/CSF, S as V / O E L _ M O / S O M O and
M as V /OEL_MO/MOCLASS. Users, therefore, need only know one file V for
the creation of natural orbitals.

K A M U Y provides an even simpler method for such access. Users can register
in the system a procedural function which defines a desired access path. In the
above example, the access path from V to N can be expressed as follows:

F U N C T I O N N A T E I G (SOL)

C = SOL / CSF

S = SOL / OEL_MO / SOMO

M = SOL / OEL_MO / MOCLASS

R E T U R N NAT (C, SOL, S, M).

Here, the last statement returns NAT (C, SOL, S, M) as the value of the function
NATEIG. Once this function is registered, a statement N A T E I G (V) can be
written simply to produce natural orbitals. The use of the function N A T E I G
reduces the burden of file book-keeping for the user and also ensures that the
same CSFs, coefficients of molecular orbitals etc, are used for the calculation of
both Ci eigenvectors and natural orbitals.

2.3. Utilities

Users can activate utility programs in the form of a function call. LISTFL,
D E S C E N D and P R INTF are useful utility programs which are currently incorpor-
ated in the KAMUY system. Utility LISTFL lists all files. Utility D E S C E N D

A data-oriented CI program system 129

gives a list o f all descendants o f a file. It can also be used to erase a file and its
descendants. VSAM data space can easily be reclaimed by using this utility. An
output list is not p roduced in K A M U Y when a module is activated, since all
computed results are stored in files. A utility module P R I N T F prints the contents
o f any file either in the form of a summary or in more detail at any time.

3. File structure in K A M U Y

In order to allocate a file, the system should be able to recognize file expressions
and to know whether the corresponding file already exists or not. The system,
therefore, maintains various system records which describe the logical relationship
among generated files. Since the VSAM data set organizat ion is widely available
and is capable o f r andom access o f records o f variable length, we decided to use
a VSAM data set to keep system records. Furthermore, the same VSAM data set
is used to keep all the logical "files" of K A M U Y in order to simplify the designing
o f the system. Using a VSAM data set as the physical data set has the following
advantages:

1. Various access methods are available. Modules in K A M U Y can read a n d / o r
write data by using keys. The modular i ty o f the program system is greatly
enhanced.

2. A data library can easily be incorporated into the system. Appending, update
and deletion are made without introducing any change in the program codes.

All VSAM records in K A M U Y have a uni form format, as shown in Table 1. The
key field (44 bytes) consists o f a file number, a data name and data labels. The
file number in the key field is the system-assigned logical file number to which
the record belongs. The data name and the labels form a unique key within a
logical file. The data descript ion field (19 bytes) is used for the manipula t ion and

Table 1. VSAM record format of KAMUY. All data including
system records have this common format. Field lengths are
shown in parentheses (unit: byte)

Field Subfield

Key field (44) File number (4)
Data name (16)
Data label t (8)
Data label 2 (8)
Data lable 3 (8)

Data description field (19) Data pointer (1)
Data type (2)
Data length (4)
Row size (4)
Reserved (8)

Data field (variable length) Data

130 F. Sasaki et al.

display of a record. It consisists of a data pointer, a data type, a record size and
(for matrix data) a row size. This field serves to increase the locality of data since
the contents of the data field can be read without having to resort to any other
records or implicit assumptions about the data type or the size. The data field
(variable length) is the field for storing the contents o f a record.

Each logical file has a file label record, as shown in Table 2. The data name and
the labels in the key field for the file label record are binary zeros. The data field
of the file label record contains a file name, author, date and time of creation,
the location and the compute r used, C P U time for generation, restart information,
file status codes, and a module number and input file numbers which created the
present file. This is one o f the fundamenta l records for the entire file management .

Al though the file format is identical, there are four types o f files in the system:
system files, l ibrary files, pr imary files and secondary files.

The roles of the system files are to map files or module names to file or module
numbers assigned by the system, to keep track of the genealogical structure of
files, and to register modules , utilities and user-defined functions. Logical file
numbers 1-99 are reserved for the system files. System files 1, 2, 5 and 6 are
currently used.

System file 1 is used to map file names to logical file numbers. A record in this
file has the format as shown in Table 3. The key field consists o f a file name and
the data field contains the corresponding file number. Inverse mapping of logical
file numbers to file names can be done by reading the file label record. System
file 2 keeps records on file numbers issued by the system. System file 5 is used
to trace a descendant o f files. The key field consists of a module number and

Table 2. File label record format of KAMUY. ArI ancester file is traced
by reading this record

Field Contents

Key field (44) File number (4)
Binary zero (40)

Data description field Character type

Data field (399) File name (16)
Author (16)
Date and time of creation (15)
Location (16)
Computer used (16)
CPU time for generation (16)
File status code (8)
Restart information (16)
Activated module number (4)
Input file numbers (36)
Comments (240)

A data-oriented CI program system 131

Table 3. Record format of file 1. Records are used to map file
names to file numbers

Field or subfield Contents

File number (4) Binary 1
Data name (16) File name
Data labels (24) Blanks

Data description field Integer type

Data field (4) Corresponding file number

input file numbers, and the data field contains the resulting output file number
(see Table 4). Whenever the K A M U Y system analyses the genealogical relation-
ship and identifies a file by its producing module and input files, the system
creates a key which corresponds to the specified file. Then, the system searches
for a record by using this key in system file 5. I f the record exists, it means that
the specified file exists. I f not, the system allocates the input files a n d activates
the corresponding module to create the specified file. System file 6 is used to
map module names to module numbers and to identify subroutines to be called.
The K A M U Y system compiles and executes statements written in the file manipu-
lation language just as any language processor does. Compi led object codes o f
defining statements for modules , utilities and funct ion programs are also stored
in this system file. Record formats o f system file 6 are shown in Table 5.

Library files store various data, such as AO basis sets, geometries o f molecules,
molecular point group l~ultiplication tables, etc. Since these data are accessed
by their keys, modules can read these library data quite easily. Enlargement or
update o f l ibrary files can be done without int roducing any change in the program
codes.

Pr imary files are created by users and read by modules. They play the very
impor tant role o f man-machine interface. In K A M U Y , a pr imary file is created

Table 4. Record format of file 5. Records are used to trace
descendants

Field or subfield Contents

File number (4) Binary 5
Data name Module number (4)
and labels (40) Input file 1-9 (36)

Data description field Integer type

Data field (4) Output file number

132 F. Sasaki et al.

Table 5. Record format of file 6. Users input written in the file manipulation
language is processed by reading these records. The first type of record is
used to map module names to module numbers. The second type contains
decoded object program of module, utility and function program definitions.
The last type of record stores function labels

Module number to module name record

Field or subfield Contents

File number (4) Binary 6
Data name (16)- # # # # M O
Data lables (24) Module number

Data description field Character type

Data field (16) Module name

Function code record

Field or subfield Contents

File number (4) Binary 6
Data name (16) Function name
Data lanes (24) CODE

Data description filed Character type (matrix)

Data filed (24.n) Compiled code of a module,
a utility or a program

Function label record

Field or subfield Contents

File number (4) Binary 6
Data name (16) Function name
Data lables (24) LABEL

Data description flied Character type

Data field (304) Date of registration and comments

by us ing a c o m m a n d C R E A T E . I n p u t f o r m a t is d e s i g n e d to be as s i m p l e as

poss ib le . A n e x a m p l e o f t he use o f C R E A T E is s h o w n in A p p e n d i x 1. A p r o m p t e r

ana lyses use rs ' inpu t , wa rns i f i n c o n s i s t e n c y a m o n g i n p u t d a t a is f o u n d a n d

conve r t s the use r ' s i n p u t to the s t a n d a r d r e c o r d f o r m a t o f K A M U Y . In s o m e

cases, the p r o m p t e r r eads a n d shows r e l a t ed files fo r a fu r the r c h e c k o f cons i s t ency .

P r i m a r y files can be c r e a t e d in a b a t c h m o d e as wel l .

S e c o n d a r y files a re t hose c r e a t e d by m o d u l e s . T h e sys tem wri tes or u p d a t e s sys tem

reco rds a n d file l abe l r e co rds w h e n these files a re c r ea t ed or de l e t ed , a n d m a i n t e n -

ance o f these r eco rds by use rs is no t necessa ry .

A data-oriented CI program system 133

4. Concluding remarks

In this section, we summarize the main features of the new CI system KAMUY.

1. The complete genealogical relationship of files is recorded in the system. Users
can easily search for a file using file expressions. There is no distincton between
searching for an existing file and creating a new file. The act of searching for a
file which has never been accessed induces computation.

2. The system offers programming facilities for file access. The burden on the
user from consistent allocation of files and invoking proper modules is greatly
reduced.

3. Data records are self-descriptive and accessed by their keys. A programmer
only has to know the data names and labels in order to be able to utilize data
produced by other modules; a detailed knowledge of the record structure is not
required. The same applies to users, who can look at the data on any file without
even knowing the data names. It should be noted that the modularity is greatly
increased since records are accessed by their keys. There is no implicit passage
of information in record format from one module to another.

4. Creation of a primary file can be done interactively. The system gives prompting
and checks data whenever possible. The chance of introducing errors in this stage
is reduced.

5. Users can see or print the contents of a file in the form of a summary or in
more detail at any time.

Program systems easily reach the point where enlarging or updating becomes a
formidable task, because the difficulties of data management and the data interface
increase quite rapidly. Therefore, data management and handling are becoming
the central problems in any large-scale program system. The idea behind designing
a new CI program was to solve such difficulties. The starting point of KAMUY
was to reveal the inherent data structure, which has not been widely done to
date. In this sense, the system may be characterized as data-oriented.

We believe that the system presented here has solved the problems mentioned
above to a considerable extent and that it can be adapted to future needs.

Acknowledgements. This work was supported by a Grant-in-Aid for Scientific Research from the
Japanese Ministry of Education under project No. 00547012. The computer facilities were provided
by Hokkaido University and the Institute for Molecular Science; computer time made available at
the computing centers is gratefully acknowledged.

Appendix 1: Logging list of a sample calculation

As a sample calculation, we performed a single and double excitation CI for the
ground state of the methylene molecule with a double zeta basis set. The reference
function is 2 2 2 ~ 1 la~2aalb23allbl. The calculation was carried out in a TSS mode on
a HITAC M680 computer at Hokkaido University Computing Center. In the
following logging list, one- and two-electron SO integrals and molecular orbitals

134 F. Sasaki et al.

were generated by the p rogram JAMOL3 and copied into the K A M U Y system.
The respective files are referred to by the temporary names OELSO, TELSO and
SOMO. The user 's responses are underlined.

K A U M Y : C R E A T E

P R I M A R Y F I L E C R E A T I O N STARTS
W H A T K I N D OF P R I M A R Y FILE(S) DO Y O U W A N T TO G E N E R A T E ?
S T A N D A R D TYPE: E N T E R (JAM / CI / (H E L P)) : CI

((M O L E C U L A R DATA))
E N T E R M O L E C U L A R S Y M M E T R Y : C2V

E N T E R # E L E C T R O N : 8

E N T E R S P I N (2 S + 1) : 3

E N T E R STATE SPACE S Y M M E T R Y : B1

I N P U T OF MO SET SIZE
E N T E R # O F MO I N E A C H R E P R E S E N T A T I O N : (1 TO 4)
8 0 2 4

SD-CI F R O M A R E F E R E N C E F U N C T I O N ? (Y / N) : ___Y

E N T E R C L O S E D S H E L L MO
(E X C E P T F R O Z E N & 1 -HOLE C O R E S I N R E F E R E N C E S) :

1-2A 1 1B2)

E N T E R O P E N S H E L L MO I N R E F E R E N C E OR C O M P L E T E ACTIVE
M O :
3Al 1B1)

K E Y IN T H E F I L E N A M E OF P R I M F I L E F O R CSF
F @ : : CSF_SPEC_3B1

K E Y IN T H E F I L E N A M E OF P R I M F I L E F O R T R A N S F O R M A T I O N
F@=: MOCL_3B1

P R I M A R Y F I L E F O R M O C L HAS B E E N C R E A T E D S U C C E S S F U L L Y
G E N E R A T E D P R I M A R Y FILES
F I L E TYPE F # F@
CSF SPEC . . . 119 CSF_SPEC_3B1
MO CLASS . . . 120 MOCL_3B1 pr imary files for CSF and

integral t ransformat ion
have been created.

P R I M A R Y F I L E C R E A T I O N E N D E D

K A M U Y : CSF :: CSF('CSF_SPEC_3BI ');

. generat ion of CSF
M CSF C A L L E D AT 87-01-28 10:59 C H I L D # = 121
M CSF E X I T AT 87-01-28 10:59 C H I L D # = 121 CPU = 0.242

A data-oriented CI program system

K A M U Y : OELMO = OEL('MOCL_3B1 ', SOMO, OELSO, TELSO);

. integral t r ans format ion

of one-elect ron integrals

M OEL C A L L E D AT 87-01-28 10:59 C H I L D # = 122
(M OEL E X I T AT 87-01-28 10:59 C H I L D # = 122 CP U = 0.071

K A M U Y : TELMO = TEL('MOCL_3B1 ', SOMO, TELSO);

. integral t ransformat ion
of two-electron integrals

M TEL C A L L E D AT 87-01-28 11:00 C H I L D # = 123
M TEL E X I T AT 87-01-28 11:01 C H I L D # = 123 C P U - 1.591

K A M U Y : EIG=EIG(CSF, TELMO, OELMO);

. get an eigenvalue and

eigenvector

M E I G C A L L E D AT 87-01-28 11:02 C H I L D # = 124
M E I G E X I T AT 87-01-28 11:08 C H I L D # = 124 C P U = 13.255

K A M U Y : PRINTF(EIG);

. pr int contents of file E I G
U P R I N T F C A L L E D AT 87-01-28 11:09

***** CI S U M M A R Y E N E R G Y & C O E F OF CONF. *****

S Y M M E T R Y P O I N T G R O U P C2V
CSF S Y M M E T R Y B1
2 S + 1 3

OF CSFS 945

S E Q U E N C E OF V A L E N C E ORBITALS

(I N T E R N A L M O # A N D R E P R E S E N T A T I O N)

1A1 2A1 1B2 3A1 1B1 4A1 5A1 6A1 7A1 8A1 2B1 2B2 3B2 4B2

E I G E N _ V A L U E OF I-ST STATE -38.994836 H A R T R E E

- - - LIST OF C O E F F I C I E N T S A N D C O N F I G U R A T I O N S - - -

C S F # C O R E EXT. V A L E N C E PART C O U P L I N G

1 0.980719

F F F U U E E E E E E E E E

(

C S F # C O R E EXT.

346 -0.009595
755 -0.003986
739 -0.003153

U P R I N T F E X I T

V A L E N C E PART C O U P L I N G

E F F U U E E E E F E E E E
F F E U U E E E E E E E F E

F F U U E E E E E E U E D E

AT 87-01-28 11:09

135

- - - LIST OF E N E R G Y L O W E R I N G A N D C O N F I G U R A T I O N S - - -

136

KAMUY: D E S C E N D (S O M O) ;

> U DESCEND CALLED AT 87-01-28 11:11

***** GENEALOGICAL TREES *****

122 < OEL
124 < EIG

123 ~ TEL

F. Sasaki et al.

print descendant list
of file SOMO

print of file label

< U DESCEND EXIT AT 87-01-28 11:11
KAMUY: E N D TSS session end

Appendix 2: Syntax of KAMUY

We describe the syntax of KAMUY input using the following rules. Text enclosed
in brackets (and) represents unit names of the syntax and the symbol ::= separates
a unit name on the left side from its definition on the right. Items separated by
the symbol] and enclosed in square brackets [and] represent a list of alternatives.
The outermost square brackets are omitted. We freely use an ellipsis or text
enclosed by the symbols in cases where the exact description of the syntax
is not essential. Other characters should be written as they are expressed on an
input of KAMUY.

(KAMUY input) ::= END
I (input element)(KAMUY input)

(input element) ::= (statement)
I (function subprogram)
I (registration of function subprogram)
[(primary file creation utility)
I (WITH utility)
I (PRINT utility)
I (DEBUG utility)
I(* utility)

(statement) ::= ; "null statement"
I (expression)
I (temporary file name)= (expression)
I EVAL (expression), (expression)

(expression) ::= (factor)
I (expression) / (role name)

A data-oriented CI program system 137

(factor) ::=

(parameter list)

[FILE#] F#] (file number)
]'(file name)'
I (temporary file name)
] ((expression))
I (function name) ((parameter list))

::= (parameter)
I (parameter list), (parameter)

(parameter) ::= (expression)
I (expression): (role name)

(temporary file name), (function name) or (role name)
::= "an identifier"

(file name) ::= "a character string"

(file number) ::= "an unsigned integer"

(registration of function)
::=[REGISTER] REG] (function name)

(function subprogram)
::=[FUNCTION I FUNC] (function name)

((role name), (role name))
[MODULE "for module definition"
I UTILITY "for utility definition"
] (statement) (statement)
RETURN (expression)

"for function program"]

(primary file creation utility)
::= CREATE [JAM] CI I GENERAL]

"prompting messages are issued for each
type of primary file (JAM for SCF related
files, CI for CI related files and GENERAL
for any type of primary file)"

(WITH utility) ::= WITH (expression)
[READ [WRITE] APPEND I UPDATE I DELETE

"record manipulation command"
I READFL] UPDATEFL

"file label manipulation command"
] APPENDF@] UPDATEF@

"file name manipulation command"
I DELETFB]
"This command deletes all data parts of a

file except for the file label in order
to save space of the VSAM data set."

138 F. Sasaki et al.

(DEBUG utility) ::= D E B U G
"This command sets or clears debugging

flags for an individual subroutine or
a group of subroutines."

(* utilities) ::= *VEDIT
"activate a utility program for the VSAM

data set handling"
I *GPSET I *GPREAD I *GPDEL] *GPLIST
"set, read, delete or list the values

of global parameters (Global parameters
are used for session control)"

Other features

1. BACK, QUIT or attention key cancels an input: they can be used to correct
a keyed-in datum.

2. HELP returns a help message.

3. PROMPT ON or OFF activates or deactivates the issuing of prompting
messages.

4. Users can issue a TSS command in a session. A text followed by the symbol
$$$ is regarded as a TSS command.

5. K A M U Y input texts can be switched from one data set to another. The symbol
$$# followed by a data set name indicates that the successive input texts are to
be taken from the specified data set.

References and notes

1. Kashiwagi H (1974) Center News of Hokkaido University Computing Center 6 10-23 (in Japanese)
2. Diercksen GHF (1982) Comput Phys Commun 25:1-6
3. OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide GC26-3838-3, IBM Corpor-

ation (1978)
4. JAMOL3 is registered as one of the library programs at the Computing Center of the Institute for

Molecular Science
5. Shavitt I (1977) Int J Quantum Chem llS: 131-148

